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Generation of Raman images through
spectral mappings
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Abstract. In this work, we propose a practical approach to access and visualize relevant information on the spatial distribution
on the anything sample about its biochemical composition. In order to carry out this analysis, we use a Raman spectroscopy
technique to obtain spectral maps with specific spatial resolution (1 and 5 micrometers) over a selected region of the sample.
Our study relies on the application of a Principal Component Analysis on the cross-correlations between the spectral blocks
measured, within a certain spectral window of interest. The associated values of these principal components are used to
build low-resolution images (with the same spatial resolution of the Raman scan) in which the relevant information on the
chemical composition is already encoded. Finally, the spatial resolution of the principal components images was numerically
enhanced in the post-processing through standard linear interpolation algorithms. In this way, we can map and visualize,
simultaneously, the spatial and spectral information. The results suggest that the Raman spectroscopy imaging is a powerful
tool for determining the biochemistry of organic and inorganic samples based on spectral scanning and thus determine
compounds concentrations of medical interest. The proposed methodology is rather general and it could be extended to other
spectroscopic measurement techniques where the spatial mapping of the spectral information is needed.
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1. Introduction

In recent decades, the implementation of digi-
tal imaging in biological systems has been used
in order to make a simple display inspection of
anatomical structures or biochemical composition
for detection, diagnosis, and treatment of diseases
[1–8]. The identification of this information through
the use of images has been very beneficial in the
areas of medicine and pharmaceuticals, because this
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may represent very specific characteristics through
some combination of colors and intensities in order
to interpret the results of a more easily [9–11]. Dif-
ferent techniques have been used for the generation
of digital images in these areas of health to evalu-
ate the anatomy and morphology of some biological
systems of the human body or malformations asso-
ciated with any cell disorder. Currently, the most
commonly used techniques are the nuclear magnetic
resonance, positron emission tomography, X-rays,
among others [12–16]. These imaging techniques,
however, allow access only the structural informa-
tion of the object that being integrating digitally. In
order to extract additional information in order to
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monitor, for instance, the physiological behavior of
biological samples or the chemical content in phar-
maceutical formulations, one has to use so-called
functional imaging approaches, which involve the
utilization of other degrees of freedom e.g., polar-
ization or spectral shifts, in order to encode those
non-structural aspects of the object under study. In
this regard, spectroscopic techniques have proved
suitable in recent years as an alternative for the non-
invasive and non-destructive biochemical assessment
in biological tissues [17–21]. In other case stud-
ies have been carried out spectroscopic mappings
in a selected area, thereby generating images repre-
sentative of this section under study on the spatial
distribution of these spectral properties [22–26].

In this sense, several methods have been already
proposed to extract valuable information about the
spectral datasets. The main one in this work is to show
the Principal Components Analysis (PCA). So, this
method can analyze the data over the entire range of
intensities that make up each one the recorded spectra
[27–33].

This paper proposes an alternative methodology
to generate Raman digital images with chemical
spectrum information from scanning mapping. The
methodology is based on the application of the
PCA for verifying the mutual correlation that exists
between all the spectra that make up the registered
database in order to build images that encode the
spatially-resolved chemical composition of the sam-
ple under study.

2. Materials and methods

2.1. Samples preparation and instrumentation

In this work a total of eight samples were pre-
pared as follows, one blood serum sample was
prepared to extract the spectral maps (The blood
sample was extracted from a voluntary donor sub-
ject, and subsequently centrifuged to separate the
blood serum). 20 microliters of serum were placed
with a micropipette on a slide covered with alu-
minum foil and let stand for 15 minutes. Other
sample was prepared with acetaminophen (com-
mercial medicine) deposited on a silicon surface.
Finally, six samples with different concentrations of
ciprofloxacin (Excipient, 20, 40, 60, 80 and 100%)
as an active ingredient were prepared including the
excipient. In the case of ciprofloxacin samples, this
reference compound was prepared from ciprofloxacin

Table 1
Parameters used in the spectral scan for each analyzed sample
(blood serum, acetaminophen deposited on a silicon surface,

ciprofloxacin and excipient)

Samples Blood Silicon & Ciprof- Excipient
Parame- Serum Acetom- loxacin
ters inophen

Area [�m] 40 × 35 50 × 50 25 × 25 25 × 25
Resolution

[�m]
5 1 5 5

Sweep
Range
[cm–1]

200 to
2000

100 to 1800 100 to
3300

100 to 3300

Spectral
block

56 2500 25 25

purchased from Sigma Aldrich (CAS 85721-33-1) in
solid sample with a purity of >98%. A solution of
HCl was added at ± 37.25% purity, thus obtaining
ciprofloxacin hydrochloride. With this preparation,
different mixed concentrations were generated in an
excipient.

A Raman microscopy system Thermo Scientific
DXR was used. The sample was focused with an
integrated microscope through a 50X objective. All
spectral dataset was recorded by using a laser source
of 780 nm, 24 mW of power and 50 s of exposure time
were used for each spectrum. Table 1, summarizes the
spectral acquisition parameters used for each sample.

2.2. Data processing

All spectral data processing was performed using
MATLAB software. Raw spectra were processed by
carrying baseline correction, smoothing and normal-
ization to remove noise, sample florescence, and shot
noise from cosmic rays, through a filter based on
the baseline correction with asymmetric least squares
smoothing algorithm [34]. Subsequently, MATLAB
was used to implement the data compression tech-
nique: PCA.

2.3. Data transformation

PCA is a multivariate ordination technique used
to display patterns in multivariate data. It is a data
analytic and hypothesis generating technique that
is intended to describe characteristic patterns in a
dataset and to expressing the data in such a way as
to highlight their similarities and differences. It has a
range of applications other than data display includ-
ing multiple regression, and variable reduction.
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In short, PCA is to find orthogonal transformations
of the original variables to get a new set of uncorre-
lated variables called principal components, obtained
in decreasing order of importance.

For the image construction, we start from the
matrixψ, which it was the result of spectral scanning
over the region of interest, and where δ1, δ2, . . . , δn
are the total spectra recorded on the mapped region.
u, v,w represent the intensity values for each Raman
spectral shift.

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ1︷︸︸︷
u1

δ2︷︸︸︷
v1 . . .

δn︷︸︸︷
w1

u2 v2 . . . w2

...
...

. . .
...

un vn . . . wn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

All variables (δn) were evaluated to build the
covariance matrix β, to obtain a correlation matrix
between the spectral registered groups.

β =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cov(δ1, δ1) cov(δ1, δ1) . . . cov(δ1, δ1)

cov(δ1, δ1) cov(δ1, δ1) . . . cov(δ1, δ1)
...

...
. . .

...

cov(δ1, δ1) cov(δ1, δ1) . . . cov(δ1, δ1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)
From this correlation matrix(β), eigenvalues were

obtained which allowed us to generate major compo-
nents.

det(β − λI) = 0 (3)

This way, a matrix of component values (ξ) was
calculated for each spectrum recorded in each (i, j)
coordinate.

ξ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ1,1 ξ1,2 . . . ξ1,j

ξ2,1 ξ2,2 . . . ξ2,j

...
...

. . .
...

ξi,1 ξi,2 . . . ξi,j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

With this methodology, it is possible to select any
principal component to generate the image. In order
to have only positive values, each value of each coor-
dinate component was normalized.

ρ = |ξmin| − ξ (5)

The new matrix of numerical data(ρ), were trans-
formed into whole number values between 0 and 255,

representing a level of intensity to build a digital
image (�) of 8 bits.

� =
(

ρ

ρmax

)
× 255 (6)

Up to this point, the matrix� already encodes infor-
mation on the chemical composition of the sample.
However, the number of elements in the matrix �
is the same as the number of discrete positions in
the Raman scan. Thus, � can be thought as a sparse
image with low spatial resolution (same spatial res-
olution as the Raman scan). In order to correct for
this and provide better visualization, we enhanced the
spatial resolution numerically in the post-processing
by re-sampling the matrix � through standard linear
interpolation algorithms. In this way, the resulting
images can have softer transitions and better resolu-
tion for each region analyzed without the need for
finer Raman mappings.

3. Results

The silicon sample combined with acetaminophen
was analyzed in a region of 50 × 50 �m with a spa-
tial resolution of 1 �m (Fig. 1A). The 2500 spectra
were processed (Fig. 1B), and each major component
value was transformed to a representative 8-bit value
to generate each pixel making up the digital image
(Fig. 1C). When the resulting image is spliced onto
the scanning region, the boundary contours between
acetaminophen and silicon can be clearly verified
(Fig. 1D).

The second sample analyzed was 40 × 35 �m of
blood serum under a resolution of 5 �m. It was sliced
to observe the resulting image of these divisions
(Fig. 2A). As shown in Fig. 2, the 56 spectra were
processed (Fig. 2B), and each principal component
value was transformed into a representative value of
8 bits to generate each pixel that make up the result-
ing image (Fig. 2C). Again, by splicing the resulting
image onto the sweep region, we can observe the
coincidence in the contours of the border between
the cuts of the blood serum sample (Fig. 2D).

The development of this procedure allows us to
evaluate the entire spectrum spectral range, or to
select regions of interest and associate them with
molecular vibrations of certain molecules. To do
this, we selected three regions of the spectral block
obtained of the blood serum sample (Fig. 3A).
These regions correspond to the range of shifts from
990 to 1005 cm–1 (R1: Region where there shift
associated with phenylalanine: 1002 cm–1, Fig. 3B),
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Fig. 1. Acetaminophen sample deposited on a silicon surface. A. Mapping region over the red box (50 × 50 microns), B. Raw spectra
recorded with a spatial resolution of 1 �m per pixel, C. image generated using the first principal component, D. Image superimposed on the
mapped region.

from 1413 to 1481 cm–1 (R2: phospholipids asso-
ciated region, Fig. 3C) and from 1611 to 1712 cm–1

(R3: range Associated with the amide I, Fig. 3D) [35].
The PCA was applied to each selected block and the
first principal component was used to generate the
representative image for each region evaluated.

Each image generated for each range of landslides
allowed reconstructing the sweep image and observ-
ing the borders in each section of the sample. The
interpretation for the color scale indicates that the
white color represents the null presence of these
organic biomolecules associated with the molecular
vibrations in each analyzed range. Otherwise, for the
other end of the scale, the presence of dark color
gives us an estimate of possible high concentrations
of these organic compounds. The improvement of
the images was carried out through a standard linear
interpolation. The result obtained by applying this

algorithm can be verified in Figs. 1–3, where 8-bit
color images were obtained from the first principal
component. Figure 1C shows the sample correspond-
ing to the preparation of acetaminophen and silicon,
and in which it is possible to verify each compound.
Here we can observe that the regions in dark color
correspond to the spectra that were registered with
greater intensity, that is, for this case they corre-
sponded to those of silicon. On the other hand Fig. 2C
corresponds to the blood serum sample, and which
was focused on a region that had a bifurcated cut
in order to observe this bifurcation (this image was
generated using the entire spectral range from 200
to 2000 cm–1). For this case, the spectra that mostly
showed a greater intensity in the peaks were recorded
in the area with the diagonal cut. Finally Fig. 3B, 3C
and 3D, were constructed individually from the main
component 1, and also generated in the range of 990
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Fig. 2. A drop of blood serum deposited on an aluminum surface. A. Mapping region over the red box, B. Raw spectra recorded with a
spatial resolution of 10 �m per pixel, C. image generated using the first principal component, D. Image superimposed on the mapped region.

to 1005 cm–1 (Vibration associated with phenylala-
nine), from 1413 to 1481 cm–1 (Phospholipids) and
from 1611 cm–1 to 1712 cm–1 (amide I). In these last
images, we associate the region with greater intensity
to a presence or greater concentration of this type of
biomolecules.

3.1. Practical case

To evaluate the algorithm, we selected a sample
of ciprofloxacin, which is an antimicrobial agent
belonging to the group of quinolones. This second
generation substance has greater activity, in addi-
tion to fewer adverse effects than the first generation.
Its mechanism as mentioned above interacts in the
bacterial cell from the DNA-gyrase, which is more
sensitive in the large negative organisms in a fast way
and the topoisomerase IV, more sensitive to gram-
positive cells more slowly. They have been widely

used for the treatment of intra and extra-hospital
infections, becoming a very important resource for
developing countries due to the high availability of
generics that drastically reduce the cost of treatment.
Its effectiveness is due to its high bioavailability, level
of safety and the way of administration [36–38].

In order to verify the changes in pixel intensities
in each image generated for each sample (0, 20, 40,
60, 80, 100% of active substance), which should be
associated with the concentrations of ciprofloxacin.
We generate a matrix of spectra for all prepared con-
centrations including the pure excipient. The PCA
was applied to a selective region from 1593 to 1652
cm–1 shown in Fig. 4, and where it can be seen that
the intensity of the peak increases as a function of the
concentration of the active principle (ciprofloxacin).
PC 1 was taken to transform each of the values into
pixel intensities. In Fig. 5, we can verify the change of
tonality in the pixels when the samples were analyzed
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Fig. 3. Spectral analysis by regions of interest. A. Raw spectra recorded. Spectral sections selected: R1, R2, and R2, B. Image generated
for R1 region: peak associated to L-phen, C. Image generated for R2 region: peak associated to phospholipids, D. Image generated for R3
region: peak associated to amide I.

from the pure excipient (without active substance),
and up to the highest concentration at 100% (only
active substance).

In addition, a predictive model of the different
active substance concentration was elaborated from
the PCA by means of a linear discriminant analysis
(LDA). The performance of the models is repre-
sented by the receiver operating characteristic (ROC)
in Fig. 6. The ROC curves are a graphic representa-
tion of sensibility vs specificity and all values for each
model are presented in Table 2.

4. Discussion and conclusion

In this article, we proposed a methodology for
processing a collection of spectral maps, which are

Fig. 4. Spectral processing. The selected region of the
ciprofloxacin spectrum between 1593 and 1652 cm–1 to evaluate
the PCA.
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Fig. 5. 8 bit image generated. A change in the shade of gray is observed when there is a concentration variation in the active substance. A.
Excipient, B. 20%, C. 40%, D. 60%, E. 80%, F. 100%.

Fig. 6. ROC curves from the LDA models for different concentra-
tions of active substance.

Table 2
Sensibility and specificity values (%) for all different substance

concentration (%) models

Concentration
Parame-
ters

100 80 60 40 20 Excipient

Sensibility 73.3 54.7 60 94.7 98.7 88
Specificity 95.4 88 93.4 98.3 98 99.7

obtained with a standard Raman microscopy setup,
based on the application of a PCA on the mutual
correlations between the different spectra recorded.
Additionally, we implemented some image process-
ing algorithms in order to numerically improve the
spatial resolution of the final images by means of stan-
dard linear interpolation. PCA is a statistical tool that
is usually applied to spectral processing. The PCA is
a statistical tool that is very useful for the processing
of large-scale data, such as databases of Raman spec-
tra that are recorded from scans in regions of interest.
In this work, an 8-bit image was reconstructed from
these Raman mappings. It was also possible to carry
out an analysis of PCA in regions of interest to ver-
ify in an image the distribution of greater intensities
associated with certain biomolecules.

Although there are a lot of algorithms to recon-
struct, this methodology is very simple to implement
and adjust to the needs that the end user desires, com-
pared to other software applications that are included
in some Raman systems, which is impossible to adjust
the parameters regarding the generation of images.

As a future work, it is the calibration to be able
to quantify some parameter of medical interest, and
even pharmaceutical to identify adulterated or falsi-
fied drugs.
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